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Abstract

There are several models and approaches for predicting the acoustic response of perforated plates and screens. Classical

models are devoted to specific configurations: particular geometrical parameters including the size and shape of the

perforations, excitations type, mounting of the screen (bonded vs. free), and interfacing media involved in multilayers

sound packages. This paper reviews these models and presents a simple and general model that can handle easily and

automatically the miscellaneous configurations in the context of the transfer matrix method. In particular, it is shown that

a perforated plate or screen can be modeled as an equivalent fluid following the Johnson–Allard approach with an

equivalent tortuosity. This equivalent tortuosity is shown to depend on the media interfacing with the perforated system.

Experimental results depicting various practical configurations are shown to corroborate the validity of the proposed

model and to evaluate its performance compared to classical ones.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

Perforated plates and screens are widely used in various noise control applications. They are mainly used as
protective layers of porous materials. When the radius of the perforations ranges between 1mm and 1 cm, one
generally speaks of macro-perforated systems. For submillimetric radius, the term micro-perforated panel is
rather used. Screens are characterized by their porosity and flow resistivity, which are, of course related, to the
size of the perforation and the perforation rate. Typical screen resistivities and porosities are between 103 and
106N sm�4 and 1% and 80%, respectively.

The acoustic effect of perforated panels and screens is mainly dependent on their perforation rate or
porosity, their perforation size or flow resistivity, their perforation thickness and their mounting conditions.
The perforated plate motion can also play a role. This is; however, dependent on the thickness and mounting
conditions; usually stiffness is neglected and only inertia is accounted for. Depending on their design, screens
and perforated plates can affect the acoustic behavior of the material, which they are coupled to. For example,
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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resistive screens can enhance the low-frequency sound absorption performance of low-flow resistivity
materials if not completely bonded. At high frequencies; however, they may decrease the sound absorption
coefficient of the protected material depending on the mounting conditions [1]. Perforated panels combined
with air gaps or porous materials can also be used as efficient sound absorbers or sound attenuators in given
frequency bands if appropriately designed [1–4].

Numerous works have been devoted to the modeling of the acoustic impedance of such systems. A typically
studied configuration consists of a flat rigid surface with periodically arranged holes. The associated classical
modeling approach concentrates on the calculation of the acoustic impedance of one hole and its averaging
using the fraction of perforated open area [2]. Several variants consider the interaction of a perforated
system with a backing cavity filled or not with a porous material [1,3–9]. Recent generalizations consider
the interaction of perforated systems with stratified porous media under normal and random incidence
conditions [1,3–6,8], the effects of the diffraction phenomenon caused by impedance discontinuities of the
boundary surface [7], the effect of interaction between perforations [9]. These various models are devoted to
specific configurations: particular geometrical parameters including the size and shape of the perforations,
excitations type, mounting of the screen (bonded vs. free), and interfacing media involved in multilayers sound
packages.

This paper is an extended version of a talk presented at the 12th ICSV Meeting in Lisbon 2005 [10]. It
presents a simple and general methodology that can handle easily and automatically these miscellaneous
configurations in the context of the transfer matrix method. In particular, it is shown that a perforated plate or
screen can be modeled as an equivalent fluid following the Johnson–Allard approach with an equivalent
tortuosity. This effective tortuosity is shown to be a function of the correction length induced by the radiation
of the perforated panel in free air and of the dynamic tortuosity of the media interfacing with it. Classical
models for both perforated plates and screens including sub-millimeter perforations configurations can be
reobtained using this simple approach. Comparisons between the present approach, classical models and
experimental results carried out for normal incidence absorption coefficient corroborate its validity and
versatility.

The paper is organized as follows. Firstly, an equivalent fluid model of the perforated panel based on Allard
Johnson’s theory of porous media is presented. The model parameters are obtained in the typical cases where
the perforated panel is coupled to free air, air gap or porous layers. Then, the validity of the approach is
discussed by comparing prediction results obtained for normal incidence sound absorption coefficients with
other existing models and measurements in various configurations. Finally, the conclusion summarizes the
main results of this paper.

2. Normal surface impedance of a perforated panel

This section shows how some classical existing models for perforated panels can be recovered from an
equivalent fluid model. Since it is shown that the coupling of the perforated panel with its surroundings
amounts to a modification of its tortuosity depending on the medium in which it radiates, the correction term
is presented in different configurations. It starts from the expression of the surface impedance of a plate made
up of cylinders radiating into 2 semi-infinite media expressed in terms of Johnson–Allard’s acoustic
parameters. The perforated plate is then coupled to other media such as a backing cavity filled or not with a
porous layer. The case of a resistive perforated screen is finally tackled to show that the classical model
(i.e. simple addition of the resistance of the screen) may be not sufficient if the perforated screen is coupled
to an absorbing layer.

2.1. Case of a perforated panel coupled to semi-infinite fluid media

The perforated plate is assumed to be of infinite lateral extent and coupled on both sides to semi-infinite
fluid media (see Fig. 1).

The physical phenomena involved in a perforated panel are well known and recalled in Fig. 2. The classical
approaches consist in evaluating the normal surface impedance of the perforated plate backed by a semi-
infinite fluid or a cavity starting from the surface impedance of a single perforation. The resistive part is
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Fig. 1. Configuration of interest: perforated plate excited by a plane wane and backed by an infinite fluid medium.

Fig. 2. Physical phenomena involved in a perforated plate.
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induced by the viscous effects occurring within the perforation due to the viscous boundary layer and around
its edges at the panel surface due to the distortion of the acoustic flow. The reactive part accounts for the
motion of an air cylinder, which is thicker than the perforation depth. This is because of the mass loading
associated to the sound radiation of the perforation and to the distortion of the acoustic flow at the panel
surface, which contribute to make the air in the neck heavier and more difficult to move. This inertial effect
amounts to increasing the mass of the vibrating air and is accounted for using correction lengths, which need
to be added to the neck depth. The differences between the existing models reside both in the expressions of
the viscous dissipation part (resistance) and the inertial part (reactance) according to the ratio of the
perforation size and the acoustic wavelength.

To simplify the derivation, the perforation of the plate is assumed of cylindrical shape (thickness: d; radius:
r) and impinged by a normal incidence plane wave. Thus, the Biot’s parameters for cylindrical pores parallel to
the wave direction of propagation can be utilized. For straight cylindrical pores it has been shown [5] that the
viscous and the thermal characteristics lengths, L and L0, respectively, are equal to the hydraulic radius of the
pores, that is L ¼ L ¼ r. The flow resistivity s is related to the perforation radius r and to the perforation rate
f by s ¼ 8Z/fr2, where Z is the dynamic viscosity of air. Due to the small thickness and shape of the pores,
thermal effects are negligible. The impedance ZA0, at the front face, inside a perforation at point A0 (see Fig. 1),
is mainly governed by the viscous and inertial effects. Both effects are accounted for in the expression of the
effective density ~re. For acoustic wavelengths much larger than the plate thickness, the normal surface
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impedance ZA0 at circular frequency o writes

ZA0 ¼ jo ~red þ fZB, (1)

where ZB is the free air acoustic impedance of the backing medium. The effective density ~re is linked to the air
density r0 by the dynamic tortuosity ~a ð ~re ¼ r0 ~aÞ and reads [5]

~re ¼ r0a1 1þ
sf

jor0a1
GJðoÞ

� �
(2)

with

GJðoÞ ¼ 1þ j
4or0a

2
1Z

s2f2L2

� �1=2

. (3)

and aN denotes the geometrical tortuosity. Consider now both the low- and high-frequency limits of ~re. These
asymptotic behaviors correspond to millimetric and sub-millimetric perforation radii, respectively.

The high-frequency expression of ~re is given by [5]

~re ¼ r0 ~a ¼ a1r0 1þ
d
L

� �
� ja1r0

d
L
. (4)

Here

d ¼

ffiffiffiffiffiffiffiffiffi
2Z
r0o

s
,

represents the viscous boundary layer thickness. Substituting the expressions of d and L ¼ r into the
expression of the effective density, one obtains

~re ¼ r0 ~a ¼ a1r0 1þ
2

r0or
Rs

� �
� ja1r0

2

r0or
Rs, (5)

where Rs ¼
1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2Zor0

p
denotes the surface resistance.

The acoustic impedance at A0 reads

ZA0 ¼ a1
2d

r
Rs þ jr0oa1d þ ja1

2d

r
Rs þ fZB. (6)

It is clearly seen that by using the following correction for the tortuosity:

a1 ¼ 1þ
2�e

d
, (7)

the following impedance model is retrieved for the normal surface impedance in front of the panel ZA ¼ ZA0/
f:

ZA ¼
2d

r
þ 4

�e

r

� �
Rs

f
þ

jr0o
f
ð2�e þ dÞ þ j

2d

r
þ 4

�e

r

� �
Rs

f
þ ZB. (8)

In the above equation, ee represents a correction length, which is a function of the perforation rate (or
porosity) together with the perforation radius [5]. By making appropriate assumptions, both Allard Ingard
and Beranek Ingard models [2] can then be reobtained from Eq. (8).

Allard Ingard model reads [5]

ZA ¼
2d

r
þ 4

� �
Rs

f
þ

jr0o
f
ð2�e þ dÞ þ ZB (9)

with �e ¼ 0:48
ffiffiffiffiffiffiffi
pr2
p
ð1� 1:14

ffiffiffiffi
f

p
Þ and

ffiffiffiffi
f

p
o0:4.

Taking ee equal to r in the first term appearing in the resistance Eq. (8) and to �e ¼ 0:48
ffiffiffiffiffiffiffi
pr2
p
ð1� 1:14

ffiffiffiffi
f

p
Þ in

the term jr0o=fð2�e þ dÞ, neglecting the term jðð2d=rÞ þ 4ð�e=rÞÞRs=f in the reactance, Eq. (9) is then
reobtained.
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Beranek Ingard’s model reads [2]

ZA ¼
2d

r
þ 4

� �
Rs

f
þ j

or0
f
ð2�e þ dÞ þ j

2d

r
þ 4

� �
Rs

f
þ ZB (10)

with �e ¼ 0:48
ffiffiffiffiffiffiffi
pr2
p
ð1� 1:47

ffiffiffiffi
f

p
þ 0:47

ffiffiffiffiffiffi
f3

q
Þ.

It is seen that Ingard in calculating the resistive part of the impedance in the perforation, assumed a
different correction length than the one used for the inertial part. Basically, he assumed the distorted flow area
to span half a sphere of radius r centered at the surface of the perforation.

If ee is taken equal to r in the first term appearing in the resistance Eq. (8) and in the term jðð2d=rÞ þ

4ð�e=rÞÞRs=f and if ee is taken equal to 0:48
ffiffiffiffiffiffiffi
pr2
p
ð1� 1:47

ffiffiffiffi
f

p
þ 0:47

ffiffiffiffiffiffi
f3

q
Þ in the term ðjr0o=fÞð2�e þ dÞ then

Eq. (10) is reobtained.
Consider now the low-frequency limit of ~re [5]

~re ¼ r0 ~a ¼ a1r0 1þ
2a1Z
sL2f

� �
� j

sf
o

. (11)

The impedance in front of the perforated panel is given by, in terms of L ¼ r and the low-frequency (static)
approximation of the flow resistivity, s ¼ 8Z=fr2

ZA ¼
1

f
jo ~red þ ZB ¼ j

or0
f

da1 1þ
a1
4

� �
þ sd þ ZB. (12)

Usually the reactance term is negligible and ZA ¼ sd+ZB, which is the classical expression for resistive
screens.

The previous expressions indicate that a rigid frame model can be used to model a perforated panel placed
into two semi-infinite media as long as its geometric tortuosity is corrected to account for the effective length
of the system. The proposed correction consists in adding the correction lengths to the panel tortuosity, which
is equal to 1 for cylindrical perforations. The next section investigates the case where the perforated panel is
backed by different acoustic systems and when it behaves as a resistive screen.

2.2. Case of perforated panels backed by a cavity: the Helmholtz resonator

Consider now a perforated plate backed by a cavity. The air layer between the plate and the rigid wall has a
depth L. Under normal incidence, it is legitimate to assume that the air backing is partitioned. The system is
known as a distributed Helmholtz resonator. Each cell represents a Helmholtz resonator with cavity volume
Vcav, neck length d and neck aperture area Aperf. The volume is linked to the backing cavity depth L by
Vcav ¼ AperfL/f. For sound at normal incidence, and for wavelengths larger than the lateral cavity
dimensions, the normal surface impedance of the air layer is ZB ¼ �jr0c0 cot(k0L), where r0 is air density, c0 is
speed of sound and k0 ¼ o/c0 is the wavenumber. The total input impedance of the perforated-air layer
combination is

ZA ¼
2d

r
þ 4

�e

r

� �
Rs

f
þ

1

f
ð2�e þ dÞjor0 � jr0c0 cot ðk0LÞ. (13)

The absorption coefficient is maximum at resonances occurring at zeros of the reactance term:
k0tg(k0L) ¼ f/(2ee+d). At low frequencies, the wavelength is larger than the depth of the cavity and the
first mode (resonance) is given by

o ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c20f

ð2�e þ dÞL

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c20Aperf

ð2�e þ dÞV cav

s
, (14)

where f/L ¼ Aperf/Vcavity represents the ratio of the perforation area to the corresponding volume of the
backing cavity, S is the cross-section of the cavity �e ¼ �0ð1� 1:14

ffiffiffiffi
f

p
Þ and �0 ¼ 8=3p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Aperf=p

p
¼ 8r=3p ¼

0:48
ffiffiffiffiffiffiffiffiffiffi
Aperf

p
¼ 0:85r is the radiation reactance of a circular, plane piston baffled in an infinite wall. The

correction term ee/e0 accounts for interaction between the perforations.
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This development shows that the resonance of the corresponding Helmholtz resonator [9] is retrieved from
the equivalent fluid model, Eq. (8) for the perforations and backing cavity. Note that Panton and Miller [11]
showed that for Lopl/16, the resonance expression should be corrected to account for other terms in the low-
frequency expansion of cot(k0L). Using the first two terms, they gave the following expression:

o ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c20Aperf

ð2�e þ dÞV cav þ ðL
2Aperf=3Þ

s
. (15)

Note that in the approach using an equivalent fluid model, Eq. (13), accounts exactly for the cot(k0L) term.
Next section explains how the case of a perforated panel backed by an absorbing layer is treated with the

proposed model.
2.3. Perforated plates in contact with a rigid frame porous layer

Since a rigid frame model is proposed to model the backing layer, the configuration represents the case
where the perforated screen is not attached to the porous layer and free to move. Allard [5] gives a detailed
analysis in Chapter 10 of his book. Here, one assumes that the main influence of the perforated screen is the
distortion of the flow in the porous material, which creates an inertial effect, but also a resistive effect. As in
the case of air, this distortion will be accounted for by a correction length resulting in an added reactance term,
which depends on the porous layer tortuosity. Two correction terms to the surface impedance at the contact
between the perforated screen and the backing porous material have been considered in this work. The first
one writes joRe ð ~rpÞ�e with ~rp ¼ r0 ~ap the porous material’s effective density; it depends on the real part of the
dynamic tortuosity Reð~apÞ of the porous layer together with ee the added length associated to the radiation in
free air. The real part of the tortuosity, which is to be related to the path length, should be used rather than the
complex valued tortuosity otherwise additional resistance effects are included. Using the complex-valued
tortuosity would result in an overestimation of the absorption coefficient. The second correction terms writes
jor0aN,pee and depends on the geometrical tortuosity of the porous layer aN,p and ee has the same meaning as
before.

If the first model is used, the resulting impedance at point B in front of the porous material, just at the rear
of the perforated screen, is given by

ZB ¼
Z0;0ðBÞ

fp

þ
1

f
joReð ~rpÞ�e. (16)

If the second model is applied, r0aN,p is substituted in Eq. (16) in place of ~rp. In this equation Z0,0(B) is the
normal surface impedance at point B in the absence of the perforated screen (the indices emphasizes the fact
that only the normal mode is propagating), fp is the porosity of the porous layer in contact with the screen
and ~rp its effective density. For example, if the porous layer has depth L and is backed by a rigid wall, Z0,0(B)
is equal to �jZc cot ð ~kpLÞ, where Zc is the characteristic impedance and ~kp is the wavenumber in the porous
material. At point A in front of the screen outside the perforation, the surface impedance is given by

ZA ¼
2d

r
þ 4

� �
Rs

f
þ

1

f
ð�e þ dÞjor0 þ

1

f
joRe ð ~rpÞ�e þ

Z0;0ðBÞ

fp

. (17)

Expressing ~rp in terms of the dynamic tortuosity of the material: ~rp ¼ r0 ~ap, the above expressions reads

ZA ¼
2d

r
þ 4

� �
Rs

f
þ

1

f
ð�eð1þRe ð~apÞÞ þ dÞjor0 þ

Z0;0

fp

ðBÞ. (18)

In general, the viscous term is much smaller than the real part of the impedance of the porous material
(Z0,0(B)) and the impedance reduces to

ZA ¼
1

f
ð�eð1þRe ð~apÞÞ þ dÞjor0 þ

Z0;0ðBÞ

fp

. (19)
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However, for the proposed model to handle the case where the perforated plate is in contact with an air
layer, the viscous term should be kept. In conclusion, using an equivalent fluid model, the equivalent
tortuosity should be taken equal to

a1ðoÞ ¼ 1þ
�e

d
ð1þRe ð~apÞÞ, (20)

when the first correction term is retained. If the static tortuosity correction term is adopted, then aN,p should
be substituted for Reð~apÞ in Eq. (18)–(20). The relevance of the correction term is investigated in Section 3. It
will be demonstrated that the dynamic correction term provides better results.

Note that Eq. (20) degenerates to Eq. (7) if the porous layer is replaced by an air gap (tortuosity ~ap ¼ 1).
Next section discusses how the proposed model deals with the case where the perforated panel is replaced by a
resistive screen.
2.4. Case of a resistive screen

Resistive screen are acoustically characterized by their flow resistance Rs and their mass per unit area rs.
The impedance of the screen is given by: Zs ¼ jorsRs=ðjors þ RsÞ. The above formula is only applicable when
the screen is free to move due to pressure differential through it. When it is rigidly bonded onto a porous
material, the inertial term is negligible and the impedance is simply given by Zs ¼ Rs. As seen in the section on
perforated plates, the interaction impedance has also a reactance part accounting for the constriction of the
oscillatory flow through the material. When backed by an absorber or a cavity, the surface impedance is the
sum of the screen impedance and the absorber/cavity impedance: ZA ¼ Zs+ZB, where ZB ¼ Z0;0ðBÞ=fp for an
absorbing material and ZB ¼ �jr0c0 cot(k0L) for an air gap terminated by a rigid wall. In consequence, the
modeling of perforated plates presented in the previous sections is applicable to resistive screens as long as the
screen is free to move. However, since the resistive part of the resistance is mainly dominated by the flow
resistivity of the screen, the impedance is given by

ZA ¼ sd þ
1

f
ð�eð1þReð~apÞÞ þ dÞjor0 þ

Z0;0ðBÞ

fp

. (21)

For high flow resistivity thin screens, the reactance part is negligible and the classical flow resistive model is
reobtained since s ¼ Rs/d.
2.5. Summary

The previous sections have shown that perforated panels can be modeled using Johnson–Allard model for
rigid porous media. The porosity f, the flow resistivity s and the characteristic lengths L, L0 are calculated
from the perforation rate and the size of the perforations. For circular cylindrical perforations of radius r, f is
simply the perforation rate, s ¼ 8Z=fr2, where Z is the dynamic viscosity of air and L ¼ L0 ¼ r. For resistive
screens, the model is applicable as long as both the flow resistance and the porosity are measured. It will be
shown in the example section that the classical model for resistive screens (i.e. simple addition of the resistance
of the screen) is not sufficient.

In order to account for the distortion of the flow induced by the perforations, the tortuosity of the
perforated panel must be corrected according to the media in which the perforated system radiates. The
correction term is a function of the correction length associated to the radiation of a circular piston in free air
noted ee together with the tortuosity of the medium in which the perforated panel radiated. In theory, it is only
valid for normal incidence plane wave excitation. However, Allard [5] showed that the same correction lengths
could also be used confidently at oblique incidence so that the proposed correction terms are suggested to be
also used for this type of excitation. Table 1 summarizes the effective tortuosity to be used depending on the
system attached to the perforated panel. In this table, for the case where the perforated screen is adjacent to a
porous material, only the dynamic tortuosity correction term is shown since it is proved in Section 3 that it
provides more reliable results than the static tortuosity correction term.
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3. Validation and applications

This section presents validation results. The proposed approach is first compared with classical models of
Beranek-Ingard, Maa and Allard (modal approach) [2,3,5], for normal incidence sound absorption
performance. Then, normal incidence sound absorption experimental results carried out on multilayered
systems of increasing complexity and comprising perforated panels are confronted to the results obtained from
the present model. In the following, the properties of the different layers are displayed in Table 2.
Table 1

Summary of equivalent tortuosity expressions used in the proposed model

Configuration Equivalent tortuosity

a1ðoÞ ¼ 1þ 2�e
d

a1ðoÞ ¼ 1þ 2�e
d

a1ðoÞ ¼ 1þ �e
d

1þRe ~ap

� �� �
(dynamic correction)

a1ðoÞ ¼ 1þ �e
d

Re ~ap;1

� �
þRe ~ap;2

� �� �

�e ¼ 0:48
ffiffiffiffiffiffiffi
pr2
p
ð1� 1:14

ffiffiffiffi
f

p
Þ, where r is the perforation radius and f the perforation rate.

Re ð~ap;iÞ: real part of the dynamic tortuosity of porous medium i.
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3.1. Comparisons with existing models

Fig. 3 shows the normal incidence sound absorption coefficient of a 1mm thick perforated panel referred to
as panel 1 in Table 2 and backed by a 60mm thick air gap. It compares (i) the present approach involving the
tortuosity correction shown in Table 1, (ii) the rigid frame model for the perforated panel without tortuosity
correction, (iii) Beranek Ingard’s and (iv) Maa’s models. Fig. 3 shows that the proposed tortuosity correction
needs to be accounted for to predict correctly the position and the amplitude of the resonance peaks
(compared with the rigid model in which the tortuosity is assumed equal to 1). Note that for air, the dynamic
and static tortuosities are equal. Good agreement is found with classical models but the proposed correction
underestimates the viscous dissipation on the first peak. However, its predictions are closer to the modal
approach. The modal approach model considers the perforated panel as an assembly of elementary square
cells of length D and infinite thickness to calculate the correction length in free air associated to the radiation
of the aperture. The pressure field inside the cell is assumed to be stationary in the plane of the cell (expansion
in terms of normal modes) and propagative along the thickness. At the aperture, the acoustic normal velocity
is supposed to be of uniform amplitude. Applying boundary conditions, solving for the modal participation
factors and introducing viscous dissipation inside the aperture and at the panel surface gives the normal
Table 2

Summary of the averaged measured properties of the materials used in the validations

Porosity Flow resistivity

(N sm�4)

Tortuosity Viscous length

(mm)

Thermal length

(mm)

Bulk density

(kgm�3)

Panel 1 (d ¼ 1mm, r ¼ 0.5mm) 0.025 23440 NA NA NA NA

Foam 1 0.99 10900 1.02 0.1 0.13 8.8

Foam 2 0.98 50000 1.5 0.034 0.13 20

Felt 0.94 23260 1.4 0.064 0.131 66

Panel 2 (d ¼ 20mm, r ¼ 1mm) 0.02 7325 NA NA NA NA

Panel 3 (d ¼ 20mm, r ¼ 1mm) 0.01 14650 NA NA NA NA

Leather screen (d ¼ 0.8mm) 0.06 17000 NA NA NA NA

Black screen (d ¼ 0.47mm) 0.08 137000 NA NA NA NA

White screen (d ¼ 0.4mm) 0.03 350000 NA NA NA NA

Fig. 3. Normal incidence sound absorption coefficient of a 1mm thick perforated panel (panel 1) backed by a 60mm thick air gap—

comparisons between the present approach involving the tortuosity correction, rigid frame approach without tortuosity correction,

Beranek Ingard’s and Maa’s models. : Current approach—dynamic tortuosity correction, : rigid frame

approach without tortuosity correction, : Beranek Ingard, : Maa, : modal approach.



ARTICLE IN PRESS
N. Atalla, F. Sgard / Journal of Sound and Vibration 303 (2007) 195–208204
surface impedance at point A of the finite thickness panel [5]

ZA ¼ j
or0
f
ð�1e þ �

2
eÞ þ

2d

r
þ 4

� �
Rs

f
þ

Z0;0

fp

ðBÞ, (22)

where ee
1 and ee

1 are the correction lengths in the air and in the porous medium, respectively
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with Zm;nðBÞ ¼ �jZcðk=kmnÞ cot ðkmnLÞ and nm;n ¼ 1 if (m, n)6¼(0,0); nm;n ¼ 1=2 if m or n ¼ 0 and n0;0 ¼ 1=4.
Fig. 4 depicts the normal incidence sound absorption coefficient of a 1mm thick perforated panel referred to

as panel 1 in Table 2 backed by a 20mm thick low-flow resistivity foam (foam 1 in Table 2). It compares (i) the
present approach involving the two tortuosity correction terms (dynamic and static) discussed in Section 2.3,
(ii) the rigid frame model for the perforated panel without tortuosity correction, (iii) Beranek Ingard’s,
(iv) Maa’s models and (v) modal approach model. Fig. 4 indicates that a good agreement is found between the
proposed approach and classical models whether the dynamic or static tortuosity correction term is used. The
static correction provides a better match with the classical models whereas the dynamic correction is in better
agreement with the modal approach. Note that in the classical models, the correction length is the same
whether the perforated panel radiates in air or in the porous material. The modification of the flow distortion
induced by the presence of the material is therefore not accounted for. This explains the slight discrepancies
between the current approach and the classical ones. Again, it is noticed that the tortuosity correction needs to
be accounted for to predict correctly the position and the amplitude of the resonance peaks (see the rigid
porous model in Fig. 4 which does not use the tortuosity correction).

Fig. 5 shows the normal incidence sound absorption coefficient of a 1mm thick perforated panel (panel 1 in
Table 2) backed by a 20mm thick mid-flow resistivity foam (foam 2 in Table 2). On the one hand, there is a
very good agreement between the modal approach (which accounts for the radiation of the perforated panel
inside the porous material) and the present model when the dynamic tortuosity correction is used. On the
Fig. 4. Normal incidence sound absorption coefficient of a 1mm thick perforated panel (panel 1) backed by a 20mm thick low-flow

resistivity foam (foam 1)—comparisons between the present approach (including dynamic and static corrections), rigid frame approach

without tortuosity correction, Beranek Ingard’s, Maa’s and modal approach’s models. : Current approach—dynamic

tortuosity correction, : Rigid frame approach without tortuosity correction, : Beranek Ingard, : Maa,

: Modal approach, : Current approach—static tortuosity correction.



ARTICLE IN PRESS
N. Atalla, F. Sgard / Journal of Sound and Vibration 303 (2007) 195–208 205
other hand, the static tortuosity correction gives the same trends as the classical models. These observations
were also made in the previous case. Compared to low flow resistivity foam, increased differences are noticed
between classical models and the proposed one. Since the foam has a higher flow resistivity than that used in
Fig. 4, the distortion of the flow is more important and induces a larger difference between the classical
correction length in free air and the one which accounts for the radiation in the backing porous layer. This is
even more important for highly resistive backing materials, In consequence, the classical models are not
accurate for such configurations. Recourse to a modal approach or the proposed modeling approach is
suggested.

The proposed model has been tested in various other configurations. For example, it has also been found to
predict extremely well sound absorption performance of 1

4 wavelength resonators and Helmholtz resonators.

3.2. Comparisons with experimental results

In this section, the results obtained with the proposed model are confronted to normal incidence sound
absorption coefficient measurement results.

Firstly, consider the case of a multilayered system made up of perforated panels and air cavities. The
configuration of interest described in Ref. [8] consisting of a system made up of a 20mm thick perforated panel
referred to as panel 2 in Table 2, a 30 cm thick air gap, a 20mm thick perforated panel referred to as panel 3 in
Table 2 terminated by a 60 cm thick air gap. The experimental data have been obtained by the authors of
paper [8]. Fig. 6 compares the sound absorption coefficient measured in a 2m wide square rectangular
reinforced concrete chamber operating as an acoustic waveguide below 80Hz (see Fig. 11 in [8]), the results
based on Maa’s approach (see Fig. 11 in [8]) together with the present model. It is seen that the proposed
approach is in very good agreement with the measurements. In addition, it captures the physics better than
Maa’s model.

In what follows, the tests have been carried out in a classical standing wave tube following ASTM E
1050-90.

Consider now three different resistive perforated screens attached to foam 1 (melamine). The screens have
been chosen with increasing resistance. The first screen is a 0.8mm thick leather perforated screen used in the
automotive industry. The perforation radii are large (0.75mm) and easily measurable. The other two screens
are perforated scrims and their perforation rates have been estimated from an inverse characterization method
involving the normal incidence absorption of the screen with a backing cavity. Figs. 7–9 show the measured
Fig. 5. Normal incidence sound absorption coefficient of a 1mm thick perforated panel (panel 1) backed by a 20mm thick mid-flow

resistivity foam (foam 2)—comparisons between the present approach (including dynamic and static corrections), rigid frame approach

without tortuosity correction, Beranek Ingard’s, Maa’s and modal approach’s models. : Current approach—dynamic

tortuosity correction, : rigid frame approach without tortuosity correction, : Beranek Ingard, : Maa,

: modal approach, : current approach—static tortuosity correction.
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Fig. 6. Normal incidence sound absorption coefficient of a system made up of a 20mm thick perforated panel (panel 2), a 30 cm thick air

gap, a 20mm thick perforated panel (panel 3) terminated by a 60 cm thick air gap [8]: comparisons between experimental results and

models. : Theoretical model Fig. 11 [11], : measurements Fig. 11 [11], : present approach.

Fig. 7. Normal incidence sound absorption coefficient of a perforated screen (leather screen, s ¼ 17 000N sm�4) backed by a 27mm foam

(foam 1): comparisons between experimental results and models. : Test—foam+leather screen, : test—foam,

: prediction—foam, : prediction—perforated screen model, : prediction—resistive screen model.
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normal incidence sound absorption coefficients of the foam and the foam with the attached screens. Also, in
each case, a purely resistive model for the screen is shown and compared to the proposed model. The effects of
the screens on this low-resistivity foam are clearly seen especially, at low frequencies. Moreover, it is shown
that a purely resistive model is not sufficient when the flow resistance of the screen is low. The reactance and
resistance resulting from the restrictions of flow through the screens perforations must be accounted for.
However, as the screen flow resistance increases the simple resistance model becomes acceptable.

The normal incidence sound absorption coefficient of a perforated screen inserted between two materials is
now investigated. A black screen is inserted between a 27mm foam (foam 1 in Table 2) and a 19mm felt
material. The results are presented in Fig. 10. This figure indicates that the effect of the screen on the felt and
foam alone is well predicted. When the perforated screen is inserted between the two porous layers, the
proposed model proves also to accurately predict the acoustic performance of the assembly. Again, the simple
resistive model fails to correctly capture the screen effect.
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Fig. 8. Normal incidence sound absorption coefficient of a perforated screen (black screen, s ¼ 137 000N sm�4) backed by a 27mm foam

(foam 1): comparisons between experimental results and models. : Test—foam+black screen, : test—foam,

: prediction—foam, : prediction—perforated screen model, : prediction—resistive screen model.

Fig. 9. Normal incidence sound absorption coefficient of a perforated screen (white screen, s ¼ 350 000N sm�4) backed by a 27mm foam

(foam 1): comparisons between experimental results and models. : Test—foam+white screen, : test—foam,

: prediction—foam, : prediction—perforated screen model, : prediction—resistive screen model.
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4. Conclusion

This paper presented a simple and general model that can handle easily and automatically miscellaneous
configurations involving perforated plates and screens. The perforated panel model is based on the use of the
Johnson–Allard model for rigid porous media with an effective tortuosity. This effective tortuosity is shown to
depend on a correction length, which is a function of the correction length induced by the radiation of the
perforated screen in free air and of the dynamic tortuosity of the media interfacing with the perforated system.
This dynamic tortuosity is obtained from the real part of Johnson’s complex dynamic tortuosity.

Comparisons with existing models and experimental results for various configurations involving perforated
screens added to air gap, to porous layer or inserted between two porous layers have been shown to
corroborate the validity of the proposed model. The presented results show that this model is capable of
handling perforated plates or screens backed by cavities filled with acoustic materials. Classical models for
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Fig. 10. Normal incidence sound absorption coefficient of a perforated screen (black screen, s ¼ 137 000N sm�4) backed by a 27mm

foam (foam 1), a 19mm felt or inserted between the two: comparisons between experimental results and models. : Test—

felt+black screen+foam, : test—foam, : Test—felt, : prediction—foam, : prediction—

Felt, : prediction—perforated screen model.
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both perforated plates and screens including sub-millimeter perforations configurations can be retrieved using
this simple approach. In addition, the mass of the perforated screen or perforated plate can also be accounted
for by extending the model to include the inertia of the solid phase (limp version of the equivalent fluid model).
The other advantage of the method is that it is general. In particular, it is not necessary to develop a specific
model for a perforated system. All the existing models (macro- and microperforated) can be obtained from an
equivalent fluid model by selecting appropriate parameters. Most transfer matrix softwares already include
porous materials models but perforated systems require specific formulations. The implementation of this
approach is therefore straightforward.
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